代码拉取完成,页面将自动刷新
#!/usr/bin/env python
import torch
import getopt
import math
import numpy
import os
import PIL
import PIL.Image
import sys
try:
from .correlation import correlation # the custom cost volume layer
except:
sys.path.insert(0, './correlation'); import correlation # you should consider upgrading python
# end
##########################################################
assert(int(str('').join(torch.__version__.split('.')[0:2])) >= 13) # requires at least pytorch version 1.3.0
torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
##########################################################
arguments_strModel = 'default'
arguments_strFirst = './images/first.png'
arguments_strSecond = './images/second.png'
arguments_strOut = './out.flo'
for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:] + '=' for strParameter in sys.argv[1::2] ])[0]:
if strOption == '--model' and strArgument != '': arguments_strModel = strArgument # which model to use
if strOption == '--first' and strArgument != '': arguments_strFirst = strArgument # path to the first frame
if strOption == '--second' and strArgument != '': arguments_strSecond = strArgument # path to the second frame
if strOption == '--out' and strArgument != '': arguments_strOut = strArgument # path to where the output should be stored
# end
##########################################################
backwarp_tenGrid = {}
def backwarp(tenInput, tenFlow):
if str(tenFlow.size()) not in backwarp_tenGrid:
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3]).view(1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2]).view(1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
backwarp_tenGrid[str(tenFlow.size())] = torch.cat([ tenHorizontal, tenVertical ], 1).cuda()
# end
tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1)
return torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.size())] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=True)
# end
##########################################################
class Network(torch.nn.Module):
def __init__(self):
super(Network, self).__init__()
class Features(torch.nn.Module):
def __init__(self):
super(Features, self).__init__()
self.netOne = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, stride=1, padding=3),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
self.netTwo = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
self.netThr = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
self.netFou = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=64, out_channels=96, kernel_size=3, stride=2, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
self.netFiv = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=96, out_channels=128, kernel_size=3, stride=2, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
self.netSix = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=128, out_channels=192, kernel_size=3, stride=2, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
# end
def forward(self, tenInput):
tenOne = self.netOne(tenInput)
tenTwo = self.netTwo(tenOne)
tenThr = self.netThr(tenTwo)
tenFou = self.netFou(tenThr)
tenFiv = self.netFiv(tenFou)
tenSix = self.netSix(tenFiv)
return [ tenOne, tenTwo, tenThr, tenFou, tenFiv, tenSix ]
# end
# end
class Matching(torch.nn.Module):
def __init__(self, intLevel):
super(Matching, self).__init__()
self.fltBackwarp = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel]
if intLevel != 2:
self.netFeat = torch.nn.Sequential()
elif intLevel == 2:
self.netFeat = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=1, stride=1, padding=0),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
# end
if intLevel == 6:
self.netUpflow = None
elif intLevel != 6:
self.netUpflow = torch.nn.ConvTranspose2d(in_channels=2, out_channels=2, kernel_size=4, stride=2, padding=1, bias=False, groups=2)
# end
if intLevel >= 4:
self.netUpcorr = None
elif intLevel < 4:
self.netUpcorr = torch.nn.ConvTranspose2d(in_channels=49, out_channels=49, kernel_size=4, stride=2, padding=1, bias=False, groups=49)
# end
self.netMain = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=49, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel])
)
# end
def forward(self, tenFirst, tenSecond, tenFeaturesFirst, tenFeaturesSecond, tenFlow):
tenFeaturesFirst = self.netFeat(tenFeaturesFirst)
tenFeaturesSecond = self.netFeat(tenFeaturesSecond)
if tenFlow is not None:
tenFlow = self.netUpflow(tenFlow)
# end
if tenFlow is not None:
tenFeaturesSecond = backwarp(tenInput=tenFeaturesSecond, tenFlow=tenFlow * self.fltBackwarp)
# end
if self.netUpcorr is None:
tenCorrelation = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=tenFeaturesFirst, tenSecond=tenFeaturesSecond, intStride=1), negative_slope=0.1, inplace=False)
elif self.netUpcorr is not None:
tenCorrelation = self.netUpcorr(torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=tenFeaturesFirst, tenSecond=tenFeaturesSecond, intStride=2), negative_slope=0.1, inplace=False))
# end
return (tenFlow if tenFlow is not None else 0.0) + self.netMain(tenCorrelation)
# end
# end
class Subpixel(torch.nn.Module):
def __init__(self, intLevel):
super(Subpixel, self).__init__()
self.fltBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel]
if intLevel != 2:
self.netFeat = torch.nn.Sequential()
elif intLevel == 2:
self.netFeat = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=1, stride=1, padding=0),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
# end
self.netMain = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=[ 0, 0, 130, 130, 194, 258, 386 ][intLevel], out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel])
)
# end
def forward(self, tenFirst, tenSecond, tenFeaturesFirst, tenFeaturesSecond, tenFlow):
tenFeaturesFirst = self.netFeat(tenFeaturesFirst)
tenFeaturesSecond = self.netFeat(tenFeaturesSecond)
if tenFlow is not None:
tenFeaturesSecond = backwarp(tenInput=tenFeaturesSecond, tenFlow=tenFlow * self.fltBackward)
# end
return (tenFlow if tenFlow is not None else 0.0) + self.netMain(torch.cat([ tenFeaturesFirst, tenFeaturesSecond, tenFlow ], 1))
# end
# end
class Regularization(torch.nn.Module):
def __init__(self, intLevel):
super(Regularization, self).__init__()
self.fltBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel]
self.intUnfold = [ 0, 0, 7, 5, 5, 3, 3 ][intLevel]
if intLevel >= 5:
self.netFeat = torch.nn.Sequential()
elif intLevel < 5:
self.netFeat = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=[ 0, 0, 32, 64, 96, 128, 192 ][intLevel], out_channels=128, kernel_size=1, stride=1, padding=0),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
# end
self.netMain = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=[ 0, 0, 131, 131, 131, 131, 195 ][intLevel], out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)
)
if intLevel >= 5:
self.netDist = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=32, out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel])
)
elif intLevel < 5:
self.netDist = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=32, out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=([ 0, 0, 7, 5, 5, 3, 3 ][intLevel], 1), stride=1, padding=([ 0, 0, 3, 2, 2, 1, 1 ][intLevel], 0)),
torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=(1, [ 0, 0, 7, 5, 5, 3, 3 ][intLevel]), stride=1, padding=(0, [ 0, 0, 3, 2, 2, 1, 1 ][intLevel]))
)
# end
self.netScaleX = torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=1, kernel_size=1, stride=1, padding=0)
self.netScaleY = torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=1, kernel_size=1, stride=1, padding=0)
# eny
def forward(self, tenFirst, tenSecond, tenFeaturesFirst, tenFeaturesSecond, tenFlow):
tenDifference = (tenFirst - backwarp(tenInput=tenSecond, tenFlow=tenFlow * self.fltBackward)).pow(2.0).sum(1, True).sqrt().detach()
tenDist = self.netDist(self.netMain(torch.cat([ tenDifference, tenFlow - tenFlow.view(tenFlow.shape[0], 2, -1).mean(2, True).view(tenFlow.shape[0], 2, 1, 1), self.netFeat(tenFeaturesFirst) ], 1)))
tenDist = tenDist.pow(2.0).neg()
tenDist = (tenDist - tenDist.max(1, True)[0]).exp()
tenDivisor = tenDist.sum(1, True).reciprocal()
tenScaleX = self.netScaleX(tenDist * torch.nn.functional.unfold(input=tenFlow[:, 0:1, :, :], kernel_size=self.intUnfold, stride=1, padding=int((self.intUnfold - 1) / 2)).view_as(tenDist)) * tenDivisor
tenScaleY = self.netScaleY(tenDist * torch.nn.functional.unfold(input=tenFlow[:, 1:2, :, :], kernel_size=self.intUnfold, stride=1, padding=int((self.intUnfold - 1) / 2)).view_as(tenDist)) * tenDivisor
return torch.cat([ tenScaleX, tenScaleY ], 1)
# end
# end
self.netFeatures = Features()
self.netMatching = torch.nn.ModuleList([ Matching(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ])
self.netSubpixel = torch.nn.ModuleList([ Subpixel(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ])
self.netRegularization = torch.nn.ModuleList([ Regularization(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ])
self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(__file__.replace('run.py', 'network-' + arguments_strModel + '.pytorch')).items() })
# end
def forward(self, tenFirst, tenSecond):
tenFirst[:, 0, :, :] = tenFirst[:, 0, :, :] - 0.411618
tenFirst[:, 1, :, :] = tenFirst[:, 1, :, :] - 0.434631
tenFirst[:, 2, :, :] = tenFirst[:, 2, :, :] - 0.454253
tenSecond[:, 0, :, :] = tenSecond[:, 0, :, :] - 0.410782
tenSecond[:, 1, :, :] = tenSecond[:, 1, :, :] - 0.433645
tenSecond[:, 2, :, :] = tenSecond[:, 2, :, :] - 0.452793
tenFeaturesFirst = self.netFeatures(tenFirst)
tenFeaturesSecond = self.netFeatures(tenSecond)
tenFirst = [ tenFirst ]
tenSecond = [ tenSecond ]
for intLevel in [ 1, 2, 3, 4, 5 ]:
tenFirst.append(torch.nn.functional.interpolate(input=tenFirst[-1], size=(tenFeaturesFirst[intLevel].shape[2], tenFeaturesFirst[intLevel].shape[3]), mode='bilinear', align_corners=False))
tenSecond.append(torch.nn.functional.interpolate(input=tenSecond[-1], size=(tenFeaturesSecond[intLevel].shape[2], tenFeaturesSecond[intLevel].shape[3]), mode='bilinear', align_corners=False))
# end
tenFlow = None
for intLevel in [ -1, -2, -3, -4, -5 ]:
tenFlow = self.netMatching[intLevel](tenFirst[intLevel], tenSecond[intLevel], tenFeaturesFirst[intLevel], tenFeaturesSecond[intLevel], tenFlow)
tenFlow = self.netSubpixel[intLevel](tenFirst[intLevel], tenSecond[intLevel], tenFeaturesFirst[intLevel], tenFeaturesSecond[intLevel], tenFlow)
tenFlow = self.netRegularization[intLevel](tenFirst[intLevel], tenSecond[intLevel], tenFeaturesFirst[intLevel], tenFeaturesSecond[intLevel], tenFlow)
# end
return tenFlow * 20.0
# end
# end
netNetwork = None
##########################################################
def estimate(tenFirst, tenSecond):
global netNetwork
if netNetwork is None:
netNetwork = Network().cuda().eval()
# end
assert(tenFirst.shape[1] == tenSecond.shape[1])
assert(tenFirst.shape[2] == tenSecond.shape[2])
intWidth = tenFirst.shape[2]
intHeight = tenFirst.shape[1]
assert(intWidth == 1024) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue
assert(intHeight == 436) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue
tenPreprocessedFirst = tenFirst.cuda().view(1, 3, intHeight, intWidth)
tenPreprocessedSecond = tenSecond.cuda().view(1, 3, intHeight, intWidth)
intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 32.0) * 32.0))
intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 32.0) * 32.0))
tenPreprocessedFirst = torch.nn.functional.interpolate(input=tenPreprocessedFirst, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
tenPreprocessedSecond = torch.nn.functional.interpolate(input=tenPreprocessedSecond, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
tenFlow = torch.nn.functional.interpolate(input=netNetwork(tenPreprocessedFirst, tenPreprocessedSecond), size=(intHeight, intWidth), mode='bilinear', align_corners=False)
tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth)
tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight)
return tenFlow[0, :, :, :].cpu()
# end
##########################################################
if __name__ == '__main__':
tenFirst = torch.FloatTensor(numpy.array(PIL.Image.open(arguments_strFirst))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))
tenSecond = torch.FloatTensor(numpy.array(PIL.Image.open(arguments_strSecond))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))
tenOutput = estimate(tenFirst, tenSecond)
objOutput = open(arguments_strOut, 'wb')
numpy.array([ 80, 73, 69, 72 ], numpy.uint8).tofile(objOutput)
numpy.array([ tenOutput.shape[2], tenOutput.shape[1] ], numpy.int32).tofile(objOutput)
numpy.array(tenOutput.numpy().transpose(1, 2, 0), numpy.float32).tofile(objOutput)
objOutput.close()
# end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。