代码拉取完成,页面将自动刷新
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import math
import sys
from torch.autograd import Variable
class DMN(nn.Module):
def __init__(self, config, idx2vec, set_num):
super(DMN, self).__init__()
self.config = config
self.set_num = set_num
# embedding layers
self.word_embed = nn.Embedding(config.word_vocab_size, config.word_embed_dim,
padding_idx=0)
# dimensions according to settings
self.s_rnn_idim = config.word_embed_dim
self.q_rnn_idim = config.word_embed_dim
self.e_cell_idim = config.s_rnn_hdim
self.m_cell_idim = config.e_cell_hdim
self.a_cell_idim = config.q_rnn_hdim + config.word_vocab_size
# self.z_dim = config.s_rnn_hdim * 7 + 2
self.z_dim = config.s_rnn_hdim * 4
# rnn layers
self.s_rnn = nn.GRU(self.s_rnn_idim, config.s_rnn_hdim, batch_first=True)
self.q_rnn = nn.GRU(self.q_rnn_idim, config.q_rnn_hdim, batch_first=True)
self.e_cell = nn.GRUCell(self.e_cell_idim, config.e_cell_hdim)
self.m_cell = nn.GRUCell(self.m_cell_idim, config.m_cell_hdim)
self.a_cell = nn.GRUCell(self.a_cell_idim, config.a_cell_hdim)
# linear layers
# self.z_sq = nn.Linear(config.s_rnn_hdim, config.q_rnn_hdim, bias=False)
# self.z_sm = nn.Linear(config.s_rnn_hdim, config.m_cell_hdim, bias=False)
self.out = nn.Linear(config.m_cell_hdim,
config.word_vocab_size, bias=False)
self.g1 = nn.Linear(self.z_dim, config.g1_dim)
self.g2 = nn.Linear(config.g1_dim, 1)
# initialization
self.init_word_embed(idx2vec)
params = self.model_params(debug=False)
self.optimizer = optim.Adam(params, lr=config.lr)
self.criterion = nn.CrossEntropyLoss()
def init_word_embed(self, idx2vec):
self.word_embed.weight.data.copy_(torch.from_numpy(np.array(idx2vec)))
self.word_embed.weight.requires_grad = False
def model_params(self, debug=True):
print('model parameters: ', end='')
params = []
total_size = 0
def multiply_iter(p_list):
out = 1
for p in p_list:
out *= p
return out
for p in self.parameters():
if p.requires_grad:
params.append(p)
total_size += multiply_iter(p.size())
if debug:
print(p.requires_grad, p.size())
print('%s\n' % '{:,}'.format(total_size))
return params
def init_rnn_h(self, batch_size):
return Variable(torch.zeros(
self.config.s_rnn_ln*1, batch_size, self.config.s_rnn_hdim)).cuda()
def init_cell_h(self, batch_size):
return Variable(torch.zeros(batch_size, self.config.s_rnn_hdim)).cuda()
def input_module(self, stories, s_lens):
word_embed = F.dropout(self.word_embed(stories), self.config.word_dr)
init_s_rnn_h = self.init_rnn_h(stories.size(0))
gru_out, _ = self.s_rnn(word_embed, init_s_rnn_h)
gru_out = gru_out.contiguous().view(-1, self.config.s_rnn_hdim).cpu()
s_lens_offset = (torch.arange(0, stories.size(0)).type(torch.LongTensor)
* self.config.max_slen[self.set_num]).unsqueeze(1)
s_lens = (torch.clamp(s_lens + s_lens_offset - 1, min=0)).view(-1)
selected = gru_out[s_lens,:].view(-1, self.config.max_sentnum[self.set_num],
self.config.s_rnn_hdim).cuda()
return selected
def question_module(self, questions, q_lens):
word_embed = F.dropout(self.word_embed(questions), self.config.word_dr)
init_q_rnn_h = self.init_rnn_h(questions.size(0))
gru_out, _ = self.q_rnn(word_embed, init_q_rnn_h)
gru_out = gru_out.contiguous().view(-1, self.config.q_rnn_hdim).cpu()
q_lens = (torch.arange(0, questions.size(0)).type(torch.LongTensor)
* self.config.max_qlen[self.set_num] + q_lens - 1)
selected = gru_out[q_lens,:].view(-1, self.config.q_rnn_hdim).cuda()
return selected
def episodic_memory_module(self, s_rep, q_rep, e_lens, memory):
# expand s_rep to have sentinel
sentinel = Variable(torch.zeros(
s_rep.size(0), 1, self.config.s_rnn_hdim)).cuda()
s_rep = torch.cat((s_rep, sentinel), 1)
q_rep = q_rep.unsqueeze(1).expand_as(s_rep)
memory = memory.unsqueeze(1).expand_as(s_rep)
# sw = self.z_sq(s_rep.view(-1, self.config.s_rnn_hdim)).view(
# q_rep.size())
# swq = torch.sum(sw * q_rep, 2, keepdim=True)
# swm = torch.sum(sw * memory, 2, keepdim=True)
# Z = torch.cat([s_rep, memory, q_rep, s_rep*q_rep, s_rep*memory,
# torch.abs(s_rep-q_rep), torch.abs(s_rep-memory), swq, swm], 2)
Z = torch.cat([s_rep*q_rep, s_rep*memory,
torch.abs(s_rep-q_rep), torch.abs(s_rep-memory)], 2)
G = self.g2(F.tanh(self.g1(Z.view(-1, self.z_dim))))
G_s = F.sigmoid(G).view(
-1, self.config.max_sentnum[self.set_num] + 1).unsqueeze(2)
G_s = torch.transpose(G_s, 0, 1).contiguous()
s_rep = torch.transpose(s_rep, 0, 1).contiguous()
# print('g', G.size())
e_rnn_h = self.init_cell_h(s_rep.size(1))
# print('input', s_rep.size())
# print('hidden', e_rnn_h.size())
hiddens = []
for step, (gg, ss) in enumerate(zip(G_s, s_rep)):
e_rnn_h = gg * self.e_cell(ss, e_rnn_h) + (1 - gg) * e_rnn_h
hiddens.append(e_rnn_h)
hiddens = torch.transpose(torch.stack(hiddens), 0, 1).contiguous().view(
-1, self.config.e_cell_hdim).cpu()
e_lens = (torch.arange(0, s_rep.size(1)).type(torch.LongTensor)
* (self.config.max_sentnum[self.set_num]+1) + e_lens - 1)
selected = hiddens[e_lens,:].view(-1, self.config.e_cell_hdim).cuda()
# print('out', selected.size())
return selected, G.view(-1, self.config.max_sentnum[self.set_num] + 1)
def answer_module(self, q_rep, memory):
y = F.softmax(self.out(memory))
a_rnn_h = memory
ys = []
#print('q_rep', q_rep[0,:])
for step in range(self.config.max_alen):
a_rnn_h = self.a_cell(torch.cat((y, q_rep), 1), a_rnn_h)
z = self.out(a_rnn_h)
y = F.softmax(z)
ys.append(z)
ys = torch.transpose(torch.stack(ys), 0, 1).contiguous()
"""
z = self.out(torch.cat((memory, q_rep), 1))
ys = torch.transpose(torch.stack([z]), 0, 1).contiguous()
"""
return ys
def forward(self, stories, questions, s_lens, q_lens, e_lens):
s_rep = self.input_module(stories, s_lens)
q_rep = self.question_module(questions, q_lens)
# print('stories', s_rep.size())
# print('questions', q_rep.size())
memory = q_rep # initial memory
gates = []
for episode in range(self.config.max_episode):
e_rep, gate = self.episodic_memory_module(s_rep, q_rep, e_lens, memory)
gates.append(gate)
memory = self.m_cell(e_rep, memory)
gates = torch.transpose(torch.stack(gates), 0, 1).contiguous()
outputs = self.answer_module(q_rep, memory)
# print('memory', memory.size())
# print('outputs', outputs.size())
return outputs, gates
def get_regloss(self, weight_decay=None):
if weight_decay is None:
weight_decay = self.config.wd
reg_loss = 0
params = [] # add params here
for param in params:
reg_loss += torch.norm(param.weight, 2)
return reg_loss * weight_decay
def decay_lr(self, lr_decay=None):
if lr_decay is None:
lr_decay = self.config.lr_decay
self.config.lr /= lr_decay
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.config.lr
print('\tlearning rate decay to %.3f' % self.config.lr)
def get_metrics(self, outputs, targets, multiple=False):
if not multiple:
outputs = outputs[:,0,:]
targets = targets[:,0]
max_idx = torch.max(outputs, 1)[1].data.cpu().numpy()
outputs_topk = torch.topk(outputs, 3)[1].data.cpu().numpy()
targets = targets.data.cpu().numpy()
acc = np.mean([float(k == tk[0]) for (k, tk)
in zip(targets, outputs_topk)]) * 100
else:
topk_list = []
target_list = []
o_outputs = outputs[:]
o_targets = targets[:]
for idx in range(outputs.size(1)):
outputs = o_outputs[:,idx,:]
targets = o_targets[:,idx]
max_idx = torch.max(outputs, 1)[1].data.cpu().numpy()
outputs_topk = torch.topk(outputs, 3)[1].data.cpu().numpy()
targets = targets.data.cpu().numpy()
topk_list.append(outputs_topk)
target_list.append(targets)
acc = np.array([1.0 for _ in range(outputs.size(0))])
for target, topk in zip(target_list, topk_list):
acc *= np.array([float(k == tk[0] or k == -100) \
for (k, tk) in zip(target, topk)])
# print(acc)
acc = np.mean(acc) * 100
return acc
def save_checkpoint(self, state, filename=None):
if filename is None:
filename = (self.config.checkpoint_dir +\
self.config.model_name + str(self.set_num) + '.pth')
else:
filename = self.config.checkpoint_dir + filename
print('\t=> save checkpoint %s' % filename)
torch.save(state, filename)
def load_checkpoint(self, filename=None):
if filename is None:
filename = (self.config.checkpoint_dir +\
self.config.model_name + str(self.set_num) + '.pth')
else:
filename = self.config.checkpoint_dir + filename
print('\t=> load checkpoint %s' % filename)
checkpoint = torch.load(filename)
self.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
# self.config = checkpoint['config']
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。