代码拉取完成,页面将自动刷新
同步操作将从 Dream/pytorch-soft-actor-critic 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import argparse
import datetime
import gym
import numpy as np
import itertools
import torch
from sac import SAC
from torch.utils.tensorboard import SummaryWriter
from replay_memory import ReplayMemory
parser = argparse.ArgumentParser(description='PyTorch Soft Actor-Critic Args')
parser.add_argument('--env-name', default="HalfCheetah-v2",
help='Mujoco Gym environment (default: HalfCheetah-v2)')
parser.add_argument('--policy', default="Gaussian",
help='Policy Type: Gaussian | Deterministic (default: Gaussian)')
parser.add_argument('--eval', type=bool, default=True,
help='Evaluates a policy a policy every 10 episode (default: True)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for reward (default: 0.99)')
parser.add_argument('--tau', type=float, default=0.005, metavar='G',
help='target smoothing coefficient(τ) (default: 0.005)')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G',
help='learning rate (default: 0.0003)')
parser.add_argument('--alpha', type=float, default=0.2, metavar='G',
help='Temperature parameter α determines the relative importance of the entropy\
term against the reward (default: 0.2)')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=False, metavar='G',
help='Automaically adjust α (default: False)')
parser.add_argument('--seed', type=int, default=123456, metavar='N',
help='random seed (default: 123456)')
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='batch size (default: 256)')
parser.add_argument('--num_steps', type=int, default=1000001, metavar='N',
help='maximum number of steps (default: 1000000)')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N',
help='hidden size (default: 256)')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N',
help='model updates per simulator step (default: 1)')
parser.add_argument('--start_steps', type=int, default=10000, metavar='N',
help='Steps sampling random actions (default: 10000)')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N',
help='Value target update per no. of updates per step (default: 1)')
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N',
help='size of replay buffer (default: 10000000)')
parser.add_argument('--cuda', action="store_true",
help='run on CUDA (default: False)')
args = parser.parse_args()
# Environment
# env = NormalizedActions(gym.make(args.env_name))
env = gym.make(args.env_name)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
env.seed(args.seed)
# Agent
agent = SAC(env.observation_space.shape[0], env.action_space, args)
#Tesnorboard
writer = SummaryWriter('runs/{}_SAC_{}_{}_{}'.format(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), args.env_name,
args.policy, "autotune" if args.automatic_entropy_tuning else ""))
# Memory
memory = ReplayMemory(args.replay_size)
# Training Loop
total_numsteps = 0
updates = 0
for i_episode in itertools.count(1):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
if args.start_steps > total_numsteps:
action = env.action_space.sample() # Sample random action
else:
action = agent.select_action(state) # Sample action from policy
if len(memory) > args.batch_size:
# Number of updates per step in environment
for i in range(args.updates_per_step):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters(memory, args.batch_size, updates)
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
updates += 1
next_state, reward, done, _ = env.step(action) # Step
episode_steps += 1
total_numsteps += 1
episode_reward += reward
# Ignore the "done" signal if it comes from hitting the time horizon.
# (https://github.com/openai/spinningup/blob/master/spinup/algos/sac/sac.py)
mask = 1 if episode_steps == env._max_episode_steps else float(not done)
memory.push(state, action, reward, next_state, mask) # Append transition to memory
state = next_state
if total_numsteps > args.num_steps:
break
writer.add_scalar('reward/train', episode_reward, i_episode)
print("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}".format(i_episode, total_numsteps, episode_steps, round(episode_reward, 2)))
if i_episode % 10 == 0 and args.eval is True:
avg_reward = 0.
episodes = 10
for _ in range(episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, evaluate=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
avg_reward += episode_reward
avg_reward /= episodes
writer.add_scalar('avg_reward/test', avg_reward, i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}".format(episodes, round(avg_reward, 2)))
print("----------------------------------------")
env.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。