代码拉取完成,页面将自动刷新
import torch
from torch import nn
import os
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import transforms
from tqdm import tqdm
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# 将模型移动到GPU上(如果有可用的话)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 图片划分为5x3去识别
needJj = [5,3]
# 图片压缩为的大小
tpxz = ( 192,320)
def euclidean_distance(p1, p2):
'''
计算两个点的欧式距离
'''
x1, y1 = p1
x2, y2 = p2
return torch.sqrt((x2-x1)**2 + (y2-y1)**2)
class BBox:
def __init__(self, xe, ye, re, be,dd = 0):
'''
定义框,左上角及右下角坐标
'''
if dd == 1:
self.x, self.y, self.r, self.b = xe, ye, re, be
else:
if re/2 >xe and 1==0:
x = 0
else:
x = xe - re/2
if be/2 > ye and 1==0:
y = 0
else:
y = ye - be/2
if xe + re/2 > 1 and 1==0:
r = 1
else:
r = xe + re/2
if ye + be / 2 > 1 and 1==0:
b = 1
else:
b = ye + be / 2
self.x, self.y, self.r, self.b = x, y, r, b
def __xor__(self, other):
'''
计算box和other的IoU
'''
cross = self & other
union = self | other
return cross / (union + 1e-6)
def __or__(self, other):
'''
计算box和other的并集
'''
cross = self & other
union = self.area + other.area - cross
return union
def __and__(self, other):
'''
计算box和other的交集
'''
xmax = min(self.r, other.r)
ymax = min(self.b, other.b)
xmin = max(self.x, other.x)
ymin = max(self.y, other.y)
cross_box = BBox(xmin, ymin, xmax, ymax, 1)
if cross_box.width <= 0 or cross_box.height <= 0:
return 0
return cross_box.area
def boundof(self, other):
'''
计算box和other的边缘外包框,使得2个box都在框内的最小矩形
'''
xmin = min(self.x, other.x)
ymin = min(self.y, other.y)
xmax = max(self.r, other.r)
ymax = max(self.b, other.b)
return BBox(xmin, ymin, xmax, ymax, 1)
def center_distance(self, other):
'''
计算两个box的中心点距离
'''
return euclidean_distance(self.center, other.center)
def bound_diagonal_distance(self, other):
'''
计算两个box的bound的对角线距离
'''
bound = self.boundof(other)
return euclidean_distance((bound.x, bound.y), (bound.r, bound.b))
@property
def center(self):
return (self.x + self.r) / 2, (self.y + self.b) / 2
@property
def area(self):
return self.width * self.height
@property
def width(self):
return self.r - self.x # + 1
@property
def height(self):
return self.b - self.y # + 1
with open('./classes.txt',encoding='utf-8') as f:
t = f.read().split('\n')
alllb = len(t)
class getData(Dataset):
def __init__(self):
super().__init__()
self.data = []
path = './labels'
for i in os.listdir(path):
self.data.append(['./images/'+i.split('.')[0]+'.png', path+'/'+i])
self.jk = len(self.data)
self.tpcl = transforms.Compose([
transforms.Resize(tpxz),
transforms.ToTensor()
])
self.alllb = alllb
def pdisIn(self,x1, y1, x2, y2, x3, y3, x4, y4):
if max(x1, x3) <= min(x2, x4) and max(y1, y3) <= min(y2, y4):
return True
else:
return False
def niou(self,rec1, rec2):
left_column_max = max(rec1[0], rec2[0])
right_column_min = min(rec1[2], rec2[2])
up_row_max = max(rec1[1], rec2[1])
down_row_min = min(rec1[3], rec2[3])
# S1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
S_cross = (down_row_min - up_row_max) * (right_column_min - left_column_max)
return S_cross / S2
def __getitem__(self, item):
dt = self.data[item]
lp = open(dt[1], encoding='utf-8')
kj = lp.read()
lp.close()
h = [ i.strip().split(' ') for i in kj.split('\n')]
if len(h[-1]) <= 1:
h.pop()
for i in h:
if len(i) == 1:
continue
for ig in range(len(i)):
i[ig] = float(i[ig])
imge = Image.open(dt[0]).convert('RGB')
img = self.tpcl(imge).permute(0, 2,1)
xz = 1 / needJj[0]
yz = 1 / needJj[1]
target = torch.zeros((needJj[0],needJj[1],9,6)).to(device)
for x in range(needJj[0]):
for i in range(needJj[1]):
sj = [xz*x, yz*i, xz*x+xz, yz*i+yz]
for ges,ko in enumerate(h):
ges = 0
kol = [ko[1]-ko[3]/2, ko[2]-ko[4]/2, ko[1]+ko[3]/2, ko[2]+ko[4]/2]
lpijk = self.niou([sj[0], sj[1], sj[2], sj[3]], [kol[0], kol[1], kol[2], kol[3]])
if self.pdisIn(sj[0], sj[1], sj[2], sj[3], kol[0], kol[1], kol[2], kol[3]) == True and lpijk>0.1 and lpijk > target[x,i,ges,4]:
target[x,i,ges,0] = ko[1]
target[x,i,ges,1] = ko[2]
target[x,i,ges,2] = ko[3]
target[x,i,ges,3] = ko[4]
target[x,i,ges,4] = lpijk
# target[x, i, ges, 5:] = 0
target[x, i, ges, 5] = 1
# target[x,i,ges,int(ko[0])+6] = 1
# else:
# target[x, i, ges, 4:] = 0
# target[x,i,ges,5] = 0
# break
return img.to(device), target
def __len__(self):
return self.jk
class mubModu(nn.Module):
def __init__(self):
super(mubModu, self).__init__()
self.ks = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(7, 7), padding=3),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=64, out_channels=192, kernel_size=(3, 3), padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=192, out_channels=256, kernel_size=(3, 3), padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(1, 1)),
nn.ReLU(inplace=True),
nn.LeakyReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=512, out_channels=12, kernel_size=(3, 3), padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=12, out_channels=10, kernel_size=(3, 3), padding=1),
nn.Sigmoid(),
)
def forward(self, x):
d2 = self.ks(x)
d2 = d2.permute(0, 2, 3, 1)
d2 = d2.reshape((d2.shape[0], d2.shape[1], d2.shape[2], 2, 5))
out = d2.squeeze(0)
return out
class mbLoss(nn.Module):
def __init__(self):
super(mbLoss, self).__init__()
self.jcs = nn.BCEWithLogitsLoss()
def CIoU(self,a, b):
v = 4 / (torch.pi ** 2) * (torch.atan(a.width / a.height) - torch.atan(b.width / b.height)) ** 2
iou =self.IoU(a, b)
alpha = v / (1 - iou + v)
return 1 - (self.DIoU(a, b) - alpha * v), iou
def DIoU(self,a, b):
d = a.center_distance(b)
c = a.bound_diagonal_distance(b)
return self.IoU(a, b) - (d ** 2) / (c ** 2)
def IoU(self,a, b):
return a ^ b
def forward(self,out, target):
allloss = 0
zsd = 0
jbb = 0
qit = 0
huhuh = 0
jsq = 0
for bash in range(target.shape[0]):
for xwz in range(target.shape[1]):
zxdwx = (1 / target.shape[1]) * xwz + (1 / target.shape[1]) / 2
for ywz in range(target.shape[2]):
zxdwy = (1/target.shape[2])*ywz + (1/target.shape[2])/2
dt = out[bash, xwz, ywz, :, :]
for qub in range(target.shape[3]):
st = target[bash, xwz, ywz, qub,:]
if st[5] > 0.8:
for jk in range(dt.shape[0]):
a = BBox(st[0], st[1], st[2], st[3])
b = BBox((dt[jk][0]-0.5) + zxdwx, (dt[jk][1]-0.5) +zxdwy, (dt[jk][2]-0.5) + 1/target.shape[1], (dt[jk][3]-0.5) + 1/target.shape[2] )
los, iou = self.CIoU(a, b)
allloss += los
jbb += iou
jsq += 1
zsd += (1- dt[jk][4]) ** 2
allloss += (1- dt[jk][4])
huhuh += (1- dt[jk][4])
else:
for jk in range(dt.shape[0]):
zsd += dt[jk][4] ** 2
qit += 1
break
return allloss/ jsq + zsd / (jsq+qit), jbb/ jsq, huhuh / (jsq)
data = getData()
mymodo = mubModu()
# mymodo = torch.load('./mox2.pth')
mymodo.to(device)
meLoss = mbLoss()
optm = torch.optim.Adam(mymodo.parameters(),lr=0.001)
maxLoss = 10000
for i in range(100):
sx = 0
cs = 0
csl = 0
zxdss = 0
datae = DataLoader(data, shuffle=True, batch_size=30)
datad = tqdm(datae)
for img,tar in datad:
optm.zero_grad()
out = mymodo(img)
loss, ub, zxd =meLoss(out, tar)
loss.backward()
optm.step()
sx += loss.item()
cs += ub.item()
zxdss += zxd.item()
csl += 1
datad.set_description("训练 loss {} epch {} iou {} zxd {}".format(sx/csl, i, cs/csl, zxdss/csl))
if sx/csl < maxLoss:
torch.save( mymodo, './mox2.pth')
print("保存模型===》")
maxLoss =sx/csl
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。