加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
model.py 4.14 KB
一键复制 编辑 原始数据 按行查看 历史
鬼&泣 提交于 2021-06-20 21:00 . annotate revised
# -*- coding: utf-8 -*-
from __future__ import division
import math
import torch
from torch import nn
from torch.nn import functional as F
# Factorised NoisyLinear layer with bias
class NoisyLinear(nn.Module):
def __init__(self, in_features, out_features, std_init=0.5):
super(NoisyLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.std_init = std_init
self.weight_mu = nn.Parameter(torch.empty(out_features, in_features))
self.weight_sigma = nn.Parameter(torch.empty(out_features, in_features))
self.register_buffer('weight_epsilon', torch.empty(out_features, in_features))
self.bias_mu = nn.Parameter(torch.empty(out_features))
self.bias_sigma = nn.Parameter(torch.empty(out_features))
self.register_buffer('bias_epsilon', torch.empty(out_features))
# init parameters
self.reset_parameters()
# reset noise
self.reset_noise()
def reset_parameters(self):
mu_range = 1 / math.sqrt(self.in_features)
# init weight parameter
self.weight_mu.data.uniform_(-mu_range, mu_range)
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features))
# init bias parameter
self.bias_mu.data.uniform_(-mu_range, mu_range)
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features))
def reset_noise(self):
def _scale_noise(size):
x = torch.randn(size, device=self.weight_mu.device)
return x.sign().mul_(x.abs().sqrt_())
# create noisy factor
epsilon_in = _scale_noise(self.in_features)
epsilon_out = _scale_noise(self.out_features)
# create noisy register parameter
self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in))
self.bias_epsilon.copy_(epsilon_out)
def forward(self, input):
if self.training:
return F.linear(input, self.weight_mu + self.weight_sigma * self.weight_epsilon,
self.bias_mu + self.bias_sigma * self.bias_epsilon)
else:
return F.linear(input, self.weight_mu, self.bias_mu)
class DQN(nn.Module):
def __init__(self, args, action_space):
super(DQN, self).__init__()
self.atoms = args.atoms
self.action_space = action_space
if args.architecture == 'canonical':
self.convs = nn.Sequential(nn.Conv2d(args.history_length, 32, 8, stride=4, padding=0), nn.ReLU(),
nn.Conv2d(32, 64, 4, stride=2, padding=0), nn.ReLU(),
nn.Conv2d(64, 64, 3, stride=1, padding=0), nn.ReLU())
self.conv_output_size = 3136
elif args.architecture == 'data-efficient':
self.convs = nn.Sequential(nn.Conv2d(args.history_length, 32, 5, stride=5, padding=0), nn.ReLU(),
nn.Conv2d(32, 64, 5, stride=5, padding=0), nn.ReLU())
self.conv_output_size = 576
self.fc_h_v = NoisyLinear(self.conv_output_size, args.hidden_size, std_init=args.noisy_std)
self.fc_h_a = NoisyLinear(self.conv_output_size, args.hidden_size, std_init=args.noisy_std)
self.fc_z_v = NoisyLinear(args.hidden_size, self.atoms, std_init=args.noisy_std)
self.fc_z_a = NoisyLinear(args.hidden_size, action_space * self.atoms, std_init=args.noisy_std)
def forward(self, x, log=False):
x = self.convs(x)
x = x.view(-1, self.conv_output_size)
v = self.fc_z_v(F.relu(self.fc_h_v(x))) # Value stream
a = self.fc_z_a(F.relu(self.fc_h_a(x))) # Advantage stream
v, a = v.view(-1, 1, self.atoms), a.view(-1, self.action_space, self.atoms)
q = v + a - a.mean(1, keepdim=True) # Combine streams
if log: # Use log softmax for numerical stability
q = F.log_softmax(q, dim=2) # Log probabilities with action over second dimension
else:
q = F.softmax(q, dim=2) # Probabilities with action over second dimension
return q
def reset_noise(self):
for name, module in self.named_children():
if 'fc' in name:
module.reset_noise()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化